
Shopping Planner

Lattu, Devendra Ahirkar, Vineet Pisupati, Kanni Sailakshmi
dev12@umbc.edu vineeta1@umbc.edu pika1@umbc.edu

Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County

December 2016

Abstract—With the growing number of services and
service providers over the world, the problem has always
been to pick the best of the service providers that can
match to the requirements of the customers. Most of
the requirements generally involve cost, the quality and
the time taken. In this paper, we are going to discuss
the shopping planner problem with respect to time and
distance. Considering multiple services across a given
location, we try to create the path that an individual can
take to cover the given set of services with the optimal
path cost. Here we will be using the common term
service providers for different kinds of shops, agencies,
offices, schools etc.

Keywords- Optimal path, Traveling Salesman Problem,
Services, Shopping Planner

I. INTRODUCTION

The motivation of this project was when we were
looking for the services around the vicinity of Balti-
more and had to pick the best of the service and also get
the best of the path to cover these services. This project
is more like the shopping aisle algorithm wherein the
customer has to pick all the items in the given shop,
peek at various category locations, choosing the best
(utility maximizing) option, and then continuing in
a similar manner until the path is complete. In our
project, we have a data set of services across the globe,
of which shops are the major of the entire set. User
of the services always had the issue of picking the
best service within their vicinity and make a route
that they can cover with the parameters to have the
considered all the required categories, get the best
route, cost and time efficiency. In this project, we
are going to cover the time and the distance factor
to get the best route. Routing problems have always
been in the picture in most of the use cases, like the
package delivery problem, the vehicle routing problem
and the shopping aisle problem. Research has proved

that the loss incurred on account of lack of a proper
route planning is huge. The routing problems generally
found are for the applications of the logistic domain;
the common customer is also in need of a solution to
this domain. This motivated us to come up with the
project to solve the routing issue for common man.

II. RELATED WORK
The Traveling Salesman Problem, is being NP-

hard has been attempted by many. The Department
of Combinatorics and Optimization at the University
of Waterloo [11] works mainly on the optimization
of the Traveling Salesman Problem, where they have
considered multiple use cases such as the route across
the major cities of US, World city tour using TSP and
many other.

III. DATASET
The data set for the project was retrieved from

“Archive.org”- SimpleGeo Public Spaces CC0 Collec-
tion Services Data set [4]. The data set is in a geojson
format and contains the following attributes -service
name, category, location co-ordinates, address. The
dataset size is 20GB and contains the details of services
across the globe. For the purpose of our project, we
considered the data of only US locations. The US
dataset is 7.4 GB and contains 12,924,903 entries.

A. Dataset Cleansing and Loading

The raw data set which was in the geojson format was
in a form of a big text and had lots of extra attributes
which we didn’t require for the project. Also, some of
the attributes were nested inside hashed attributes. We
wrote a script in nodeJS which asynchronously spawned
threads and read a line from the JSON file, parsed it and
inserted it into mongoDB. We added 2dsphere index to
the data which was needed for the geospatial queries.

1

IV. PROBLEM STATEMENT

Customers are given the option to select a maximum
of five service categories. Some of the service cate-
gories that we are available with us for our project are
Groceries, Furniture, Electronic, School, Bank, Health
care, Doctor etc. which totals to 80 categories. The
user is given the option to search the categories from
the current location or can enter a location of his/her
own. The user is also given an option to set a radius
limit in miles of up to how much radius should the
services search be restricted to from the set location.
Our application will search for only services categories
given by the user within the given radius i.e in the
vicinity of the given input location. If services are not
found, the user will be prompted that the service cate-
gory is not available in the vicinity. If all the services
are found, the application will pick the services within
the vicinity, pick the best shop from every category
and compute the best route for these categories. The
user will then be provided with a map having detailed
navigation information of the entire route.

V. ALGORITHM

The Traveling Salesman Problem(TSP) [1] is a clas-
sic algorithm which solves the issue of route opti-
mization. It is an NP-hard problem and has a brute
force solution in O(n!) time complexity. TSP tries to
find a Hamiltonian cycle [3] with the smallest possible
overall routing weights. In other words, TSP answers
to the following question - ”Given a list of cities and
the distances between each pair of cities, what is the
shortest possible route that visits each city exactly once
and returns to the origin city?”. However, in our version
of TSP, we need not visit all the service providers to
find the shortest route. The shortest route needs to be
planned between home and only those service provides
that can fulfill the shopping item list of the customer.
From the notation perspective, we will consider n as the
number of categories and m as the maximum number
of shops for each category. We will be listing the
algorithms that we implemented as well as the ones
which we studied for our usecase.

Fig. 1. Classic TSP: Traverse all the data points and find the best
route.

Fig. 2. Requirement in our case: Plan the shortest route by selecting
one data point for every category such that total route cost is the
smallest

A. Nearest Neighbor (NN)

The nearest neighbor algorithm [5] was one of the
first algorithms used to determine a solution to the
traveling salesman problem. In it, the salesman starts
at a random city and repeatedly visits the nearest city
until all have been visited. It quickly yields a short
tour, but usually not the optimal one.
We experimented with the following implementation
for this algorithm:

1) Start with home location and set the current
location pointer to home.

2) Select a service provider that is closest to the

2

home. Move current location pointer to this ser-
vice provider.

3) Mark the item corresponding to the visited ser-
vice provider as completed.

4) Select the service provider that is closest to the
current location and has it’s category unmarked.

5) Repeat step 3 and 4 till all items are marked as
completed.

The Nearest Neighbor is a greedy approach and many
not lead to the best path and at times may give out the
worst path. Here, we need to calculate distance of every
point from home location and thus the time complexity
will be O(n∗m). The time complexity to form distance
matrix will be O(n2). Therefore, the running time
complexity for this algorithm is O(n2)+O(n∗m).

B. Dijkstra’s algorithm
Dijkstra’s algorithm [6] finds the shortest path be-

tween two points in a graph. Input to the algorithm
is a set of vertices ‘V’ and a set of edges ‘E’. Also,
every edge between vertices u and v should have a
weight w(u, v). Thus, we generate a path from source
vertex ‘S’ to the destination vertex ‘T’. The algorithm
proceeds in an incremental fashion by considering the
adjacent vertices and selecting the vertex with the
minimum weight. The running time of this algorithm
is O((E+V) log V). This algorithm is not a good fit
for us, as the source and destination is the same in
our case and we have to make sure that the selected
path covers shops from each product type. This criteria
cannot be maintained in the Dijkstra’s algorithm and
will thus give insufficient results.

C. 2-OPT
The 2-OPT [7] is a optimizing algorithm for solving

the traveling salesman problem. The approach is to
compute a route at the initial stage which may not
be the best. The next step is to select nodes from the
route randomly and swap it with every valid possible
combination of nodes and check for the best of these
swapping. This approach is generally used in the vehi-
cle routing problem. The number of swaps make this
approach time consuming.

D. Simulated Annealing
Simulated Annealing [8] is another approach for

optimizing the traveling salesman algorithm. The main
idea of this algorithm is unlike the 2-opt [7] and hill
climbing algorithm [9], the solution is not stuck to the
local minima [10], where it believes to have obtained

the optimal solution but there exists a global maxima
[11] that can provide the best solution.

E. Clustering and Centroid Analysis
We brainstormed about the possible ways to solve

our version of TSP using a new approach which we
named as clustering and centroid analysis.
Our implementation of the algorithm was as follows:

1) Create multiple clusters, each having randomly
allocated single service providers from each of
the individual categories such that no service
provider can be present in more than one cluster.

2) Calculate the centroid of every cluster.
3) Measure the distance of the every centroid from

home as well as the distance between every
centroid to all the services providers contained
within the cluster with those particular centroids.

4) Sum up all the measures and select the cluster
who has the shortest measure.

5) Use our formulation from Nearest Neighbor to
calculate the distance matrix and decide upon
the ordering of the service providers from home
location.

Even though this seemed to be a version of fast
approximation approach for calculation of the closest
possible route, the output is based upon the randomness
in formation of clusters. The runtime complexity for
creating random clusters, getting centroid, and
calculating distances from home and centroid is
O(n∗m) individually. The runtime complexity for
calculating the distance matrix is and O(n2) as before.
Therefore, the overall runtime even for this algorithm
is in O(n∗m)+O(n2).

Another problem that we faced when we had to
find the route was unlike the naive node and edge
approach where we had the distances to be of a single
unit. This being a real world scenario, wherein the
distances of two different points is not the flat distance
between the two points. The distance depends on the
spherical parameter of the Earth and also two different
points can have one or more route, so theses routes can
have multiple distances. We had to pick one distance
that can not be the shortest but also look into the
fact if the other nodes lie within or at the vicinity of
this route. In order to solve this problem of multiple
distances and spherical distance calculation, we made
use of MongoDB and Google Maps API. MongoDB’s
distance calculation provided us with the distance

3

between locations co-ordinates. Google Maps API
provided us the optimal route between two locations
co-ordinates, if there are multiple route to reach a
particular place. Also, Google Maps API makes use of
2-OPT and it majorly solves the TSP problem when
provided with multiple points.

Keeping in mind the above issues, we also had
to pick an algorithm for our project which would not
only solve the problem of routing but also pick the best
service point from the service categories that we have.
The problem of picking one from every cluster was
a constraint that we had to address. After discussing
with Dr. Halem on different algorithms we can use,
we found that the naive approach had to be used since
we had to traverse and pick the best of the node from
every cluster. After the best pick from every cluster
we decided to feed these nodes for solving the routing
problem.

F. Nearest Neighbor(NN) from Home
We designed a modified version of Nearest Neighbor

algorithm to get all the unique item list category wise
nearest neighboring service providers.
Our implementation of the algorithm was as follows:

1) Start with home location and set the current
location pointer to home.

2) Create a list of arrays where each array contains
service providers for a particular item.

3) From each of these arrays we shortlist a single
service provider who has a distance closest to
home.

4) Create a distance matrix for home and for each
of the shortlisted service providers by calculating
the distances of every service provider with each
other and from home.

5) Calculate the sum for each row of this distance
matrix and select the row with the max sum.

6) Finally do ordering over the service providers
by selecting the columns corresponding to the
ascending order of selected matrix row.

There are certain advantages of our modified NN algo-
rithm which includes keeping the user as close to home
as possible. Our modified algorithm also performs in
O(n2)+O(n∗m) time. The output from this algorithm
might not be the optimal one as we are not considering
all the possible routes like the one done by brute force
approach. However, given the usecase for our problem,
this algorithm gives a fairly descent result.

VI. FUNCTIONAL FLOW DESCRIPTION
As per the use case we have, we have designed

the following sequence of steps that the user will be
following to the get the best route.
The user has to provide the following inputs:
1. Location - Current/ Enter a location (within USA)
2. Radius (in miles)
3. Categories (max of 5)

The data is then computed as follows:
1. Based on the input, the data will be filtered to get
all the shops within the given radius.
2. Out of this data, the shops/ services that fall into
the given category of the input are filtered
3. One shop/ service out of the entire set is picked for
every category. These shops/ services are then fed to
the algorithm i.e. nearest neighbor algorithm.
4. The route is then finally computed using the nodes.

Fig. 3. Data Flow Diagram

VII. SERVICE ARCHITECTURE

Fig. 4. Service Architecture

4

For the purpose of this project, we planned to design
a scalable REST API which can be used by other web
or mobile clients. We also created a website which
will consume this API and provide a service to the
clients. Keeping in mind the huge dataset and the
constraint of calculating geo-distances, we needed a
database which was good in handling location related
information. Previously, we did work on PostGreSQL
and ArcGIS. But PostGreSQL has issues in reading
the geojson files and ArcGIS was tough to integrate
it to our rest of the application. MongoDb solved both
the problems of integration and also provides a high
support geospatial queries.

A. Technologies used

1) NodeJS: NodeJS is an runtime environment for
JavaScript on the server side created in 2009. It is
based on Google’s V8 JavaScript engine. It makes
use of the Reactor pattern and runs a single threaded
event loop which delegates requests to multiple worker
threads. Due to such event driven architecture it
sports an asynchronous I/O providing high levels of
concurrency and availability.

2) Rest API: Rest is nothing but a standardized way
for communication between devices on the internet. It
involves data transfer in the HTML, JSON, JS and
XML protocols. HTTP is the protocol used on the
internet to send and receive data. According to the
RESTful conventions, there are HTTP verbs such as
GET, POST, PUT and DELETE depending on the
task to be performed. When everyone follows these
conventions, it makes things easier and simpler to un-
derstand for other developers. In this project, we created
a REST API using NodeJS JavaScript environment and
Express application framework. This API was used by
the website which fetched HTML pages and made Ajax
calls to the NodeJS server.
3) MongoDB: MongoDB is a NoSQL document

based database which stores data in the BSON format
(Binary JSON). It is famous for its fast writes, totally
flexible schema design, simple queries, etc.
It has a high support for geospatial queries. There many
operators which query on the basis of the location
coordinates. It has the ‘$geoNear’ operator which finds
out the points near to a certain point within the specified
radius. Such geo-spatial queries are extremely powerful.
They are executed only if there is a 2dsphere index
(geospatial index) on the document. A geospatial index
creates a tree based data-structure from the co-ordinates

making retrieval very easy.
MongoDB has a full proof aggregation framework
called the Aggregation Pipeline. It is used for process-
ing data on multiple levels to get aggregated results.
Some of the operators it supports are - $match, $group,
$project, $sort, $unwind, $geonear. Internally an ag-
gregate query is divided into chunks and processed in
parallel giving a tremendous boost to the performance.
It can be called as an alternate to MongoDB’s map-
reduce and sometimes may even give better results than
the former.

Fig. 5. Given the fact of different clusters and select on point from
every cluster and then compute the route for these data points.

Fig. 6. Mongo Pre-Aggregation Code Snippet

B. Geohash

MongoDB requires a 2dsphere index to be created
before any geo-spatial operation can be performed on
the collection. Internally a 2dsphere index works on
the concept of geohashing. Geohashing is the technique
of dividing the map into multiple the entire map into
small quadrants and assigning a unique string of bits to
each quadrant such that neighboring quadrants always
have some part of their geohash common. This helps
in geo-spatial queries, and thus can be used to reduce
the search space. Using geohashes a tree based data
structure called the R-tree is created which brings
down geo-spatial searching to O(log(n)) complexity.
Thus, geohashing is a very powerful technique which
mongoDB makes full use of.

5

VIII. RESULT
Following are the screenshots of the images from our

application.

Fig. 7. User Interface - User Input and Map

Fig. 8. User Interface - Detailed Navigation

Fig. 9. User Interface - Detailed Navigation

IX. CONCLUSION
Thus, we were able to provide a service for users to

get the shortest route according to their shopping lists
,i.e., selecting the shops offering the required services
in the locality and then finding the shortest path to
traverse these shops.

X. FUTURE WORK
The future scope of our project will be to consider

the cost factor of the goods and services. The user will

be able to provide the cost range for the services and
then the results will be calculated considering the cost
factor and also optimizing it on this factor. In addition
to the route traversal, and displaying the route on map,
the user will also be able to search for the previous
route i.e. history of the routes will be maintained.
Also, users search history and travel history can be
used to pick the service categories. This project can be
used to solve the major vehicle routing problem and
package delivery problem wherein parameters would
be time, cost and order of delivery (prioritization).

References
[1] Traveling Salesman Problem, Wikipedia: htt ps :

//en.wikipedia.org/wiki/Travelling_salesmanproblem
[2] Traveling Salesman Problem, Google Developers:

https://developers.google.com/optimization/routing/tsp
[3] Hamiltonian Path, Wikipedia: htt ps :

//en.wikipedia.org/wiki/Hamiltonian_path
[4] Dataset, Archive.org htt ps : //archive.org/details/2011 −

08−SimpleGeo−CC0−Public−Spaces
[5] Nearest Neighbor Algorithm, Wikipedia: htt ps :

//en.wikipedia.org/wiki/Nearest_neighbour_algorithm
[6] Dijkstra’s Algorithm, Wikipedia: htt ps :

//en.wikipedia.org/wiki/Di jkstra′s_algorithm
[7] 2-OPT Algorithm, Wikipedia: htt ps :

//en.wikipedia.org/wiki/2−opt
[8] Simulated Annealing: htt p :

//www.bookstaber.com/david/opinion/SAT SP.pd f
[9] Hill Climbing Algorithm: htt p :

//www.cs.cornell.edu/gomes/selman − gomes − encycl −
hillclimbing.pd f

[10] Local minima, Quora: htt ps : //www.quora.com/What − is−
the − di f f erence − between − local − minima − maxima −
and −absolute−minima−maxima

[11] Global minima, Quora: htt ps : //www.quora.com/On− a−
graph−whats−the−di f f erence−between−global−and−
local −maximum−minimum− values

[12] University of Waterloo, TSP: htt p :
//www.math.uwaterloo.ca/tsp/

6

